Математический анализ Примеры

Этап 1
Поскольку является константой относительно , производная по равна .
Этап 2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.1
Чтобы применить цепное правило, зададим как .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Заменим все вхождения на .
Этап 4
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 4.1
По правилу суммы производная по имеет вид .
Этап 4.2
Поскольку является константой относительно , производная относительно равна .
Этап 4.3
Добавим и .
Этап 4.4
Поскольку является константой относительно , производная по равна .
Этап 4.5
Умножим на .
Этап 4.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.7
Умножим на .
Этап 4.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.9
Умножим на .
Этап 5
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Применим свойство дистрибутивности.
Этап 5.2
Умножим на .
Этап 5.3
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 5.3.1
Вынесем множитель из .
Этап 5.3.2
Вынесем множитель из .
Этап 5.3.3
Вынесем множитель из .
Этап 5.4
Вычтем из .
Этап 5.5
Перепишем в виде .
Этап 5.6
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 5.6.1
Применим свойство дистрибутивности.
Этап 5.6.2
Применим свойство дистрибутивности.
Этап 5.6.3
Применим свойство дистрибутивности.
Этап 5.7
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 5.7.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.7.1.1
Умножим на .
Этап 5.7.1.2
Умножим на .
Этап 5.7.1.3
Умножим на .
Этап 5.7.1.4
Перепишем, используя свойство коммутативности умножения.
Этап 5.7.1.5
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 5.7.1.5.1
Перенесем .
Этап 5.7.1.5.2
Умножим на .
Этап 5.7.1.6
Умножим на .
Этап 5.7.1.7
Умножим на .
Этап 5.7.2
Вычтем из .
Этап 5.8
Применим свойство дистрибутивности.
Этап 5.9
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.9.1
Умножим на .
Этап 5.9.2
Умножим на .
Этап 5.10
Развернем , умножив каждый член в первом выражении на каждый член во втором выражении.
Этап 5.11
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.11.1
Умножим на .
Этап 5.11.2
Умножим на .
Этап 5.11.3
Перепишем, используя свойство коммутативности умножения.
Этап 5.11.4
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 5.11.4.1
Перенесем .
Этап 5.11.4.2
Умножим на .
Этап 5.11.5
Умножим на .
Этап 5.11.6
Умножим на .
Этап 5.11.7
Перепишем, используя свойство коммутативности умножения.
Этап 5.11.8
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 5.11.8.1
Перенесем .
Этап 5.11.8.2
Умножим на .
Нажмите для увеличения количества этапов...
Этап 5.11.8.2.1
Возведем в степень .
Этап 5.11.8.2.2
Применим правило степени для объединения показателей.
Этап 5.11.8.3
Добавим и .
Этап 5.11.9
Умножим на .
Этап 5.11.10
Умножим на .
Этап 5.12
Вычтем из .
Этап 5.13
Добавим и .