Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Производная по равна .
Этап 2.3
Заменим все вхождения на .
Этап 3
Этап 3.1
Объединим и .
Этап 3.2
Сократим общий множитель и .
Этап 3.2.1
Умножим на .
Этап 3.2.2
Сократим общие множители.
Этап 3.2.2.1
Вынесем множитель из .
Этап 3.2.2.2
Сократим общий множитель.
Этап 3.2.2.3
Перепишем это выражение.
Этап 4
Этап 4.1
Чтобы применить цепное правило, зададим как .
Этап 4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3
Заменим все вхождения на .
Этап 5
Этап 5.1
Объединим и .
Этап 5.2
Объединим и .
Этап 5.3
Перенесем влево от .
Этап 5.4
Сократим общий множитель и .
Этап 5.4.1
Вынесем множитель из .
Этап 5.4.2
Сократим общие множители.
Этап 5.4.2.1
Вынесем множитель из .
Этап 5.4.2.2
Сократим общий множитель.
Этап 5.4.2.3
Перепишем это выражение.
Этап 6
Производная по равна .
Этап 7
Объединим и .
Этап 8
Этап 8.1
Чтобы применить цепное правило, зададим как .
Этап 8.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 8.3
Заменим все вхождения на .
Этап 9
Перенесем влево от .
Этап 10
Производная по равна .
Этап 11
Этап 11.1
Изменим порядок членов.
Этап 11.2
Упростим каждый член.
Этап 11.2.1
Изменим порядок и .
Этап 11.2.2
Изменим порядок и .
Этап 11.2.3
Применим формулу двойного угла для синуса.