Математический анализ Примеры

Этап 1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы применить цепное правило, зададим как .
Этап 1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3
Заменим все вхождения на .
Этап 2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Производная по равна .
Этап 2.3
Заменим все вхождения на .
Этап 3
Возведем в степень .
Этап 4
Возведем в степень .
Этап 5
Применим правило степени для объединения показателей.
Этап 6
Добавим и .
Этап 7
По правилу суммы производная по имеет вид .
Этап 8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 9
Поскольку является константой относительно , производная относительно равна .
Этап 10
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 10.1
Добавим и .
Этап 10.2
Умножим на .