Математический анализ Примеры

Этап 1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы применить цепное правило, зададим как .
Этап 1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3
Заменим все вхождения на .
Этап 2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Производная по равна .
Этап 2.3
Заменим все вхождения на .
Этап 3
Возведем в степень .
Этап 4
Возведем в степень .
Этап 5
Применим правило степени для объединения показателей.
Этап 6
Добавим и .
Этап 7
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 7.1
Чтобы применить цепное правило, зададим как .
Этап 7.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 7.3
Заменим все вхождения на .
Этап 8
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 8.1
Поскольку является константой относительно , производная по равна .
Этап 8.2
Умножим на .
Этап 8.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 8.4
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 8.4.1
Умножим на .
Этап 8.4.2
Изменим порядок множителей в .