Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2
Этап 2.1
Применим правило степени и перемножим показатели, .
Этап 2.2
Умножим на .
Этап 3
Этап 3.1
Чтобы применить цепное правило, зададим как .
Этап 3.2
Производная по равна .
Этап 3.3
Заменим все вхождения на .
Этап 4
Этап 4.1
Поскольку является константой относительно , производная по равна .
Этап 4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3
Упростим выражение.
Этап 4.3.1
Умножим на .
Этап 4.3.2
Перенесем влево от .
Этап 4.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.5
Упростим с помощью разложения.
Этап 4.5.1
Умножим на .
Этап 4.5.2
Вынесем множитель из .
Этап 4.5.2.1
Вынесем множитель из .
Этап 4.5.2.2
Вынесем множитель из .
Этап 4.5.2.3
Вынесем множитель из .
Этап 5
Этап 5.1
Вынесем множитель из .
Этап 5.2
Сократим общий множитель.
Этап 5.3
Перепишем это выражение.
Этап 6
Перепишем, используя свойство коммутативности умножения.