Математический анализ Примеры

Trovare la Derivata - d/dx e^(6x)-csc(x)cot(x)
Этап 1
По правилу суммы производная по имеет вид .
Этап 2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.1.3
Заменим все вхождения на .
Этап 2.2
Поскольку является константой относительно , производная по равна .
Этап 2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4
Умножим на .
Этап 2.5
Перенесем влево от .
Этап 3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3.3
Производная по равна .
Этап 3.4
Производная по равна .
Этап 3.5
Возведем в степень .
Этап 3.6
Применим правило степени для объединения показателей.
Этап 3.7
Добавим и .
Этап 3.8
Возведем в степень .
Этап 3.9
Возведем в степень .
Этап 3.10
Применим правило степени для объединения показателей.
Этап 3.11
Добавим и .
Этап 4
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Применим свойство дистрибутивности.
Этап 4.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Умножим на .
Этап 4.2.2
Умножим на .
Этап 4.2.3
Умножим на .
Этап 4.2.4
Умножим на .
Этап 4.3
Изменим порядок членов.