Математический анализ Примеры

Trovare la Derivata - d/dx логарифм по основанию 2 от e^(-x)cos(pix)
Этап 1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы применить цепное правило, зададим как .
Этап 1.2
Производная по равна .
Этап 1.3
Заменим все вхождения на .
Этап 2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.1
Чтобы применить цепное правило, зададим как .
Этап 3.2
Производная по равна .
Этап 3.3
Заменим все вхождения на .
Этап 4
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 4.1
Поскольку является константой относительно , производная по равна .
Этап 4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3
Умножим на .
Этап 5
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 5.1
Чтобы применить цепное правило, зададим как .
Этап 5.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 5.3
Заменим все вхождения на .
Этап 6
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 6.1
Поскольку является константой относительно , производная по равна .
Этап 6.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 6.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 6.3.1
Умножим на .
Этап 6.3.2
Перенесем влево от .
Этап 6.3.3
Перепишем в виде .
Этап 7
Упростим.
Нажмите для увеличения количества этапов...
Этап 7.1
Применим свойство дистрибутивности.
Этап 7.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Объединим и .
Этап 7.2.2
Объединим и .
Этап 7.2.3
Объединим и .
Этап 7.2.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.2.4.1
Сократим общий множитель.
Этап 7.2.4.2
Перепишем это выражение.
Этап 7.2.5
Объединим и .
Этап 7.2.6
Объединим и .
Этап 7.2.7
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.2.7.1
Сократим общий множитель.
Этап 7.2.7.2
Перепишем это выражение.
Этап 7.2.8
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.2.8.1
Сократим общий множитель.
Этап 7.2.8.2
Перепишем это выражение.
Этап 7.3
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 7.3.1
Разделим дроби.
Этап 7.3.2
Переведем в .
Этап 7.3.3
Объединим и .