Математический анализ Примеры

Trovare la Derivata - d/dx 2arccos( квадратный корень из x)
Этап 1
Продифференцируем, используя правило умножения на константу.
Нажмите для увеличения количества этапов...
Этап 1.1
С помощью запишем в виде .
Этап 1.2
Поскольку является константой относительно , производная по равна .
Этап 2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Производная по равна .
Этап 2.3
Заменим все вхождения на .
Этап 3
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 3.1
Применим правило степени и перемножим показатели, .
Этап 3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Сократим общий множитель.
Этап 3.2.2
Перепишем это выражение.
Этап 4
Упростим.
Этап 5
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 5.1
Умножим на .
Этап 5.2
Объединим и .
Этап 5.3
Вынесем знак минуса перед дробью.
Этап 6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 7
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 8
Объединим и .
Этап 9
Объединим числители над общим знаменателем.
Этап 10
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 10.1
Умножим на .
Этап 10.2
Вычтем из .
Этап 11
Вынесем знак минуса перед дробью.
Этап 12
Объединим и .
Этап 13
Умножим на .
Этап 14
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 14.1
Перенесем влево от .
Этап 14.2
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 15
Сократим общий множитель.
Этап 16
Перепишем это выражение.