Математический анализ Примеры

Этап 1
По правилу суммы производная по имеет вид .
Этап 2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Умножим на .
Этап 3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.1
Объединим и .
Этап 3.2
Умножим на .
Этап 3.3
Объединим и .
Этап 3.4
Перенесем влево от .
Этап 3.5
Поскольку является константой относительно , производная по равна .
Этап 3.6
Перепишем в виде .
Этап 3.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.8
Умножим на .
Этап 4
Перепишем выражение, используя правило отрицательных степеней .
Этап 5
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 5.1.1
Объединим и .
Этап 5.1.2
Объединим и .
Этап 5.1.3
Перенесем влево от .
Этап 5.1.4
Вынесем знак минуса перед дробью.
Этап 5.2
Изменим порядок членов.