Математический анализ Примеры

Этап 1
Поскольку является константой относительно , производная по равна .
Этап 2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.1
Чтобы применить цепное правило, зададим как .
Этап 3.2
Производная по равна .
Этап 3.3
Заменим все вхождения на .
Этап 4
Возведем в степень .
Этап 5
Возведем в степень .
Этап 6
Применим правило степени для объединения показателей.
Этап 7
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 7.1
Добавим и .
Этап 7.2
Поскольку является константой относительно , производная по равна .
Этап 7.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 7.4
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 7.4.1
Умножим на .
Этап 7.4.2
Перенесем влево от .
Этап 8
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 8.1
Чтобы применить цепное правило, зададим как .
Этап 8.2
Производная по равна .
Этап 8.3
Заменим все вхождения на .
Этап 9
Возведем в степень .
Этап 10
Применим правило степени для объединения показателей.
Этап 11
Добавим и .
Этап 12
Поскольку является константой относительно , производная по равна .
Этап 13
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 14
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 14.1
Умножим на .
Этап 14.2
Перенесем влево от .
Этап 15
Упростим.
Нажмите для увеличения количества этапов...
Этап 15.1
Применим свойство дистрибутивности.
Этап 15.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 15.2.1
Умножим на .
Этап 15.2.2
Умножим на .