Введите задачу...
Математический анализ Примеры
Этап 1
Поскольку является константой относительно , производная по равна .
Этап 2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3
Этап 3.1
Чтобы применить цепное правило, зададим как .
Этап 3.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.3
Заменим все вхождения на .
Этап 4
Этап 4.1
Поскольку является константой относительно , производная по равна .
Этап 4.2
Объединим дроби.
Этап 4.2.1
Объединим и .
Этап 4.2.2
Объединим и .
Этап 4.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.4
Умножим на .
Этап 4.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.6
Умножим на .
Этап 5
Этап 5.1
Применим свойство дистрибутивности.
Этап 5.2
Объединим термины.
Этап 5.2.1
Умножим на .
Этап 5.2.2
Объединим и .
Этап 5.2.3
Вынесем знак минуса перед дробью.