Математический анализ Примеры

Этап 1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Поскольку является константой относительно , производная относительно равна .
Этап 2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.2
Производная по равна .
Этап 2.2.3
Заменим все вхождения на .
Этап 2.3
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.4
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.4.1
Применим правило степени и перемножим показатели, .
Этап 2.4.2
Перенесем влево от .
Этап 2.5
Объединим и .
Этап 3
Вычтем из .