Введите задачу...
Математический анализ Примеры
Этап 1
Поскольку является константой относительно , производная по равна .
Этап 2
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Заменим все вхождения на .
Этап 3
Этап 3.1
Умножим на .
Этап 3.2
По правилу суммы производная по имеет вид .
Этап 3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4
Поскольку является константой относительно , производная относительно равна .
Этап 3.5
Упростим выражение.
Этап 3.5.1
Добавим и .
Этап 3.5.2
Умножим на .
Этап 4
Этап 4.1
Применим свойство дистрибутивности.
Этап 4.2
Применим свойство дистрибутивности.
Этап 4.3
Объединим термины.
Этап 4.3.1
Возведем в степень .
Этап 4.3.2
Применим правило степени для объединения показателей.
Этап 4.3.3
Добавим и .