Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Поскольку является константой относительно , производная относительно равна .
Этап 2
Этап 2.1
Перепишем в виде .
Этап 2.2
Поскольку является константой относительно , производная по равна .
Этап 2.3
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.4
По правилу суммы производная по имеет вид .
Этап 2.5
Поскольку является константой относительно , производная относительно равна .
Этап 2.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.7
По правилу суммы производная по имеет вид .
Этап 2.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.9
Поскольку является константой относительно , производная относительно равна .
Этап 2.10
Добавим и .
Этап 2.11
Умножим на .
Этап 2.12
Добавим и .
Этап 2.13
Умножим на .
Этап 2.14
Добавим и .
Этап 2.15
Добавим и .
Этап 2.16
Добавим и .
Этап 2.17
Умножим на .
Этап 3
Вычтем из .