Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Перепишем в виде .
Этап 1.2
Развернем , вынося из логарифма.
Этап 2
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.3
Заменим все вхождения на .
Этап 3
Поскольку является константой относительно , производная по равна .
Этап 4
Этап 4.1
Перенесем .
Этап 4.2
Умножим на .
Этап 4.2.1
Возведем в степень .
Этап 4.2.2
Применим правило степени для объединения показателей.
Этап 5
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 6
Производная по равна .
Этап 7
Этап 7.1
Объединим и .
Этап 7.2
Сократим общий множитель .
Этап 7.2.1
Сократим общий множитель.
Этап 7.2.2
Перепишем это выражение.
Этап 7.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 7.4
Умножим на .