Введите задачу...
Математический анализ Примеры
Этап 1
По правилу суммы производная по имеет вид .
Этап 2
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Умножим на .
Этап 3
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Умножим на .
Этап 4
Поскольку является константой относительно , производная относительно равна .
Этап 5
Этап 5.1
Поскольку является константой относительно , производная по равна .
Этап 5.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.3
Умножим на .
Этап 6
Этап 6.1
Поскольку является константой относительно , производная относительно равна .
Этап 6.2
Поскольку является константой относительно , производная относительно равна .
Этап 7
Этап 7.1
Добавим и .
Этап 7.2
Добавим и .
Этап 7.3
Добавим и .