Математический анализ Примеры

Этап 1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Поскольку является константой относительно , производная относительно равна .
Этап 2.3
Добавим и .
Этап 2.4
Поскольку является константой относительно , производная по равна .
Этап 2.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.6
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.6.1
Умножим на .
Этап 2.6.2
Перенесем влево от .
Этап 2.6.3
Перепишем в виде .
Этап 2.7
По правилу суммы производная по имеет вид .
Этап 2.8
Поскольку является константой относительно , производная относительно равна .
Этап 2.9
Добавим и .
Этап 2.10
Поскольку является константой относительно , производная по равна .
Этап 2.11
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.12
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.12.1
Умножим на .
Этап 2.12.2
Перенесем влево от .
Этап 2.12.3
Перепишем в виде .
Этап 3
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.1
Применим свойство дистрибутивности.
Этап 3.2
Применим свойство дистрибутивности.
Этап 3.3
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Умножим на .
Этап 3.3.2
Умножим на .
Этап 3.3.3
Умножим на .
Этап 3.3.4
Умножим на .
Этап 3.3.5
Умножим на .
Этап 3.3.6
Умножим на .
Этап 3.3.7
Вычтем из .
Этап 3.3.8
Добавим и .