Введите задачу...
Математический анализ Примеры
Этап 1
Перепишем в виде .
Этап 2
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Заменим все вхождения на .
Этап 3
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Поскольку является константой относительно , производная по равна .
Этап 3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4
Умножим на .
Этап 3.5
Поскольку является константой относительно , производная относительно равна .
Этап 3.6
Упростим выражение.
Этап 3.6.1
Добавим и .
Этап 3.6.2
Умножим на .
Этап 4
Этап 4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 4.2
Объединим термины.
Этап 4.2.1
Объединим и .
Этап 4.2.2
Вынесем знак минуса перед дробью.
Этап 4.2.3
Объединим и .
Этап 4.2.4
Перенесем влево от .
Этап 4.3
Упростим знаменатель.
Этап 4.3.1
Вынесем множитель из .
Этап 4.3.1.1
Вынесем множитель из .
Этап 4.3.1.2
Вынесем множитель из .
Этап 4.3.1.3
Вынесем множитель из .
Этап 4.3.2
Применим правило умножения к .
Этап 4.3.3
Возведем в степень .
Этап 4.4
Сократим общий множитель и .
Этап 4.4.1
Вынесем множитель из .
Этап 4.4.2
Сократим общие множители.
Этап 4.4.2.1
Вынесем множитель из .
Этап 4.4.2.2
Сократим общий множитель.
Этап 4.4.2.3
Перепишем это выражение.