Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
С помощью запишем в виде .
Этап 1.1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.1.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Заменим все вхождения на .
Этап 1.1.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.1.4
Объединим и .
Этап 1.1.5
Объединим числители над общим знаменателем.
Этап 1.1.6
Упростим числитель.
Этап 1.1.6.1
Умножим на .
Этап 1.1.6.2
Вычтем из .
Этап 1.1.7
Объединим дроби.
Этап 1.1.7.1
Вынесем знак минуса перед дробью.
Этап 1.1.7.2
Объединим и .
Этап 1.1.7.3
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 1.1.8
По правилу суммы производная по имеет вид .
Этап 1.1.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.10
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.11
Упростим члены.
Этап 1.1.11.1
Добавим и .
Этап 1.1.11.2
Объединим и .
Этап 1.1.11.3
Объединим и .
Этап 1.1.11.4
Сократим общий множитель.
Этап 1.1.11.5
Перепишем это выражение.
Этап 1.2
Первая производная по равна .
Этап 2
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Приравняем числитель к нулю.
Этап 3
Этап 3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 4
Этап 4.1
Найдем значение в .
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим.
Этап 4.1.2.1
Возведение в любую положительную степень дает .
Этап 4.1.2.2
Добавим и .
Этап 4.1.2.3
Перепишем в виде .
Этап 4.1.2.4
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 4.2
Перечислим все точки.
Этап 5