Математический анализ Примеры

Trovare la Derivata - d/d@VAR g(x) = натуральный логарифм e^x+ натуральный логарифм x
Этап 1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы применить цепное правило, зададим как .
Этап 1.2
Производная по равна .
Этап 1.3
Заменим все вхождения на .
Этап 2
По правилу суммы производная по имеет вид .
Этап 3
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 4
Производная по равна .
Этап 5
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Изменим порядок множителей в .
Этап 5.2
Умножим на .
Этап 5.3
Multiply the numerator and denominator of the fraction by .
Нажмите для увеличения количества этапов...
Этап 5.3.1
Умножим на .
Этап 5.3.2
Объединим.
Этап 5.4
Применим свойство дистрибутивности.
Этап 5.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.5.1
Сократим общий множитель.
Этап 5.5.2
Перепишем это выражение.
Этап 5.6
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 5.6.1
Вынесем множитель из .
Этап 5.6.2
Вынесем множитель из .
Этап 5.6.3
Вынесем множитель из .