Математический анализ Примеры

Trovare la Derivata - d/d@VAR g(x) = square root of x+(x-3)^3
Этап 1
По правилу суммы производная по имеет вид .
Этап 2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1
С помощью запишем в виде .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.4
Объединим и .
Этап 2.5
Объединим числители над общим знаменателем.
Этап 2.6
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.6.1
Умножим на .
Этап 2.6.2
Вычтем из .
Этап 2.7
Вынесем знак минуса перед дробью.
Этап 3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Чтобы применить цепное правило, зададим как .
Этап 3.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.1.3
Заменим все вхождения на .
Этап 3.2
По правилу суммы производная по имеет вид .
Этап 3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4
Поскольку является константой относительно , производная относительно равна .
Этап 3.5
Добавим и .
Этап 3.6
Умножим на .
Этап 4
Перепишем выражение, используя правило отрицательных степеней .
Этап 5
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 5.1.1
Умножим на .
Этап 5.1.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5.1.3
Объединим и .
Этап 5.1.4
Объединим числители над общим знаменателем.
Этап 5.1.5
Умножим на .
Этап 5.2
Изменим порядок членов.