Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Поскольку является константой относительно , производная относительно равна .
Этап 2.3
Добавим и .
Этап 3
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 4
Этап 4.1
По правилу суммы производная по имеет вид .
Этап 4.2
Поскольку является константой относительно , производная по равна .
Этап 4.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.4
Умножим на .
Этап 4.5
Поскольку является константой относительно , производная по равна .
Этап 4.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.7
Умножим на .
Этап 5
Этап 5.1
Применим свойство дистрибутивности.
Этап 5.2
Применим свойство дистрибутивности.
Этап 5.3
Упростим числитель.
Этап 5.3.1
Упростим каждый член.
Этап 5.3.1.1
Умножим на .
Этап 5.3.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 5.3.1.2.1
Применим свойство дистрибутивности.
Этап 5.3.1.2.2
Применим свойство дистрибутивности.
Этап 5.3.1.2.3
Применим свойство дистрибутивности.
Этап 5.3.1.3
Упростим каждый член.
Этап 5.3.1.3.1
Умножим на .
Этап 5.3.1.3.2
Умножим на .
Этап 5.3.1.3.3
Перепишем, используя свойство коммутативности умножения.
Этап 5.3.1.3.4
Умножим на .
Этап 5.3.1.3.5
Умножим .
Этап 5.3.1.3.5.1
Умножим на .
Этап 5.3.1.3.5.2
Умножим на .
Этап 5.3.2
Изменим порядок множителей в .
Этап 5.4
Изменим порядок членов.