Введите задачу...
Математический анализ Примеры
Этап 1
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 2
Этап 2.1
Преобразуем неравенство в уравнение.
Этап 2.2
Разложим на множители, используя метод группировки.
Этап 2.2.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 2.2.2
Запишем разложение на множители, используя данные целые числа.
Этап 2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.4
Приравняем к , затем решим относительно .
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Добавим к обеим частям уравнения.
Этап 2.5
Приравняем к , затем решим относительно .
Этап 2.5.1
Приравняем к .
Этап 2.5.2
Добавим к обеим частям уравнения.
Этап 2.6
Окончательным решением являются все значения, при которых верно.
Этап 2.7
Используем каждый корень для создания контрольных интервалов.
Этап 2.8
Выберем тестовое значение из каждого интервала и подставим это значение в исходное неравенство для определения интервалов, удовлетворяющих неравенству.
Этап 2.8.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 2.8.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 2.8.1.2
Заменим на в исходном неравенстве.
Этап 2.8.1.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
Истина
Истина
Этап 2.8.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 2.8.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 2.8.2.2
Заменим на в исходном неравенстве.
Этап 2.8.2.3
Левая часть меньше правой части , значит, данное утверждение ложно.
Ложь
Ложь
Этап 2.8.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 2.8.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 2.8.3.2
Заменим на в исходном неравенстве.
Этап 2.8.3.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
Истина
Истина
Этап 2.8.4
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Истина
Ложь
Истина
Истина
Ложь
Истина
Этап 2.9
Решение состоит из всех истинных интервалов.
или
или
Этап 3
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Этап 4