Введите задачу...
Математический анализ Примеры
Этап 1
Зададим аргумент в большим , чтобы узнать, где определено данное выражение.
Этап 2
Этап 2.1
Преобразуем неравенство в уравнение.
Этап 2.2
Разложим на множители, используя правило полных квадратов.
Этап 2.2.1
Перепишем в виде .
Этап 2.2.2
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Этап 2.2.3
Перепишем многочлен.
Этап 2.2.4
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Этап 2.3
Приравняем к .
Этап 2.4
Добавим к обеим частям уравнения.
Этап 2.5
Используем каждый корень для создания контрольных интервалов.
Этап 2.6
Выберем тестовое значение из каждого интервала и подставим это значение в исходное неравенство для определения интервалов, удовлетворяющих неравенству.
Этап 2.6.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 2.6.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 2.6.1.2
Заменим на в исходном неравенстве.
Этап 2.6.1.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
Истина
Истина
Этап 2.6.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 2.6.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 2.6.2.2
Заменим на в исходном неравенстве.
Этап 2.6.2.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
Истина
Истина
Этап 2.6.3
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Истина
Истина
Истина
Истина
Этап 2.7
Решение состоит из всех истинных интервалов.
или
или
Этап 3
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Этап 4