Введите задачу...
Математический анализ Примеры
Этап 1
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 2
Этап 2.1
Преобразуем неравенство в уравнение.
Этап 2.2
Вынесем множитель из .
Этап 2.2.1
Вынесем множитель из .
Этап 2.2.2
Вынесем множитель из .
Этап 2.2.3
Вынесем множитель из .
Этап 2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.4
Приравняем к .
Этап 2.5
Приравняем к , затем решим относительно .
Этап 2.5.1
Приравняем к .
Этап 2.5.2
Добавим к обеим частям уравнения.
Этап 2.6
Окончательным решением являются все значения, при которых верно.
Этап 2.7
Используем каждый корень для создания контрольных интервалов.
Этап 2.8
Выберем тестовое значение из каждого интервала и подставим это значение в исходное неравенство для определения интервалов, удовлетворяющих неравенству.
Этап 2.8.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 2.8.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 2.8.1.2
Заменим на в исходном неравенстве.
Этап 2.8.1.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 2.8.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 2.8.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 2.8.2.2
Заменим на в исходном неравенстве.
Этап 2.8.2.3
Левая часть меньше правой части , значит, данное утверждение ложно.
False
False
Этап 2.8.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 2.8.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 2.8.3.2
Заменим на в исходном неравенстве.
Этап 2.8.3.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 2.8.4
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Истина
Ложь
Истина
Истина
Ложь
Истина
Этап 2.9
Решение состоит из всех истинных интервалов.
или
или
Этап 3
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 4
Этап 4.1
Чтобы избавиться от знака корня в левой части уравнения, возведем обе части в степень .
Этап 4.2
Упростим каждую часть уравнения.
Этап 4.2.1
С помощью запишем в виде .
Этап 4.2.2
Упростим левую часть.
Этап 4.2.2.1
Упростим .
Этап 4.2.2.1.1
Перемножим экспоненты в .
Этап 4.2.2.1.1.1
Применим правило степени и перемножим показатели, .
Этап 4.2.2.1.1.2
Сократим общий множитель .
Этап 4.2.2.1.1.2.1
Сократим общий множитель.
Этап 4.2.2.1.1.2.2
Перепишем это выражение.
Этап 4.2.2.1.2
Упростим.
Этап 4.2.3
Упростим правую часть.
Этап 4.2.3.1
Возведение в любую положительную степень дает .
Этап 4.3
Решим относительно .
Этап 4.3.1
Вынесем множитель из .
Этап 4.3.1.1
Вынесем множитель из .
Этап 4.3.1.2
Вынесем множитель из .
Этап 4.3.1.3
Вынесем множитель из .
Этап 4.3.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4.3.3
Приравняем к .
Этап 4.3.4
Приравняем к , затем решим относительно .
Этап 4.3.4.1
Приравняем к .
Этап 4.3.4.2
Добавим к обеим частям уравнения.
Этап 4.3.5
Окончательным решением являются все значения, при которых верно.
Этап 5
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Этап 6