Математический анализ Примеры

Trovare la Derivata Usando la Regola del Quoziente - d/dx F(x)=(x^3+27)/(x+3)
Этап 1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Поскольку является константой относительно , производная относительно равна .
Этап 2.4
Добавим и .
Этап 2.5
По правилу суммы производная по имеет вид .
Этап 2.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.7
Поскольку является константой относительно , производная относительно равна .
Этап 2.8
Добавим и .
Этап 3
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.1
Применим свойство дистрибутивности.
Этап 3.2
Применим свойство дистрибутивности.
Этап 3.3
Применим свойство дистрибутивности.
Этап 3.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.4.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.4.1.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 3.4.1.2.1
Перенесем .
Этап 3.4.1.2.2
Умножим на .
Нажмите для увеличения количества этапов...
Этап 3.4.1.2.2.1
Возведем в степень .
Этап 3.4.1.2.2.2
Применим правило степени для объединения показателей.
Этап 3.4.1.2.3
Добавим и .
Этап 3.4.1.3
Умножим на .
Этап 3.4.1.4
Умножим на .
Этап 3.4.1.5
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.4.1.5.1
Умножим на .
Этап 3.4.1.5.2
Умножим на .
Этап 3.4.2
Вычтем из .