Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Поскольку является константой относительно , производная относительно равна .
Этап 2.4
Добавим и .
Этап 2.5
По правилу суммы производная по имеет вид .
Этап 2.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.7
Поскольку является константой относительно , производная относительно равна .
Этап 2.8
Добавим и .
Этап 3
Этап 3.1
Применим свойство дистрибутивности.
Этап 3.2
Применим свойство дистрибутивности.
Этап 3.3
Применим свойство дистрибутивности.
Этап 3.4
Упростим числитель.
Этап 3.4.1
Упростим каждый член.
Этап 3.4.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.4.1.2
Умножим на , сложив экспоненты.
Этап 3.4.1.2.1
Перенесем .
Этап 3.4.1.2.2
Применим правило степени для объединения показателей.
Этап 3.4.1.2.3
Добавим и .
Этап 3.4.1.3
Перепишем, используя свойство коммутативности умножения.
Этап 3.4.1.4
Перепишем, используя свойство коммутативности умножения.
Этап 3.4.1.5
Умножим на , сложив экспоненты.
Этап 3.4.1.5.1
Перенесем .
Этап 3.4.1.5.2
Применим правило степени для объединения показателей.
Этап 3.4.1.5.3
Добавим и .
Этап 3.4.1.6
Умножим на .
Этап 3.4.1.7
Умножим на .
Этап 3.4.1.8
Перепишем, используя свойство коммутативности умножения.
Этап 3.4.1.9
Умножим на .
Этап 3.4.2
Вычтем из .
Этап 3.5
Изменим порядок членов.
Этап 3.6
Вынесем множитель из .
Этап 3.6.1
Вынесем множитель из .
Этап 3.6.2
Вынесем множитель из .
Этап 3.6.3
Вынесем множитель из .
Этап 3.6.4
Вынесем множитель из .
Этап 3.6.5
Вынесем множитель из .
Этап 3.7
Вынесем множитель из .
Этап 3.8
Вынесем множитель из .
Этап 3.9
Вынесем множитель из .
Этап 3.10
Вынесем множитель из .
Этап 3.11
Вынесем множитель из .
Этап 3.12
Перепишем в виде .
Этап 3.13
Вынесем знак минуса перед дробью.