Математический анализ Примеры

Trovare la Derivata Usando la Regola del Quoziente - d/dx (ax+b)/c
Этап 1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2
По правилу суммы производная по имеет вид .
Этап 3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Умножим на .
Этап 4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 4.1
Поскольку является константой относительно , производная относительно равна .
Этап 4.2
Добавим и .
Этап 4.3
Поскольку является константой относительно , производная относительно равна .
Этап 5
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Применим свойство дистрибутивности.
Этап 5.2
Применим свойство дистрибутивности.
Этап 5.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.3.1.1
Умножим .
Нажмите для увеличения количества этапов...
Этап 5.3.1.1.1
Умножим на .
Этап 5.3.1.1.2
Умножим на .
Этап 5.3.1.1.3
Умножим на .
Этап 5.3.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 5.3.1.2.1
Умножим на .
Этап 5.3.1.2.2
Умножим на .
Этап 5.3.2
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 5.3.2.1
Добавим и .
Этап 5.3.2.2
Добавим и .
Этап 5.4
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 5.4.1
Вынесем множитель из .
Этап 5.4.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.4.2.1
Вынесем множитель из .
Этап 5.4.2.2
Сократим общий множитель.
Этап 5.4.2.3
Перепишем это выражение.