Математический анализ Примеры

Trovare la Derivata Usando la Regola del Quoziente - d/d@VAR f(x)=(e^x)/(x^2)
Этап 1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.1.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 4.1.1.2
Умножим на .
Этап 4.1.2
Изменим порядок множителей в .
Этап 4.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Применим правило степени и перемножим показатели, .
Этап 4.2.2
Умножим на .
Этап 4.3
Изменим порядок членов.
Этап 4.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.4.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 4.4.1.1
Вынесем множитель из .
Этап 4.4.1.2
Вынесем множитель из .
Этап 4.4.1.3
Вынесем множитель из .
Этап 4.4.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 4.4.2.1
Вынесем множитель из .
Этап 4.4.2.2
Вынесем множитель из .
Этап 4.4.2.3
Вынесем множитель из .
Этап 4.5
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 4.5.1
Вынесем множитель из .
Этап 4.5.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 4.5.2.1
Вынесем множитель из .
Этап 4.5.2.2
Сократим общий множитель.
Этап 4.5.2.3
Перепишем это выражение.