Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Поскольку является константой относительно , производная относительно равна .
Этап 2.3
Поскольку является константой относительно , производная относительно равна .
Этап 2.4
Добавим и .
Этап 2.5
По правилу суммы производная по имеет вид .
Этап 2.6
Поскольку является константой относительно , производная относительно равна .
Этап 2.7
Поскольку является константой относительно , производная относительно равна .
Этап 2.8
Добавим и .
Этап 3
Этап 3.1
Применим свойство дистрибутивности.
Этап 3.2
Применим свойство дистрибутивности.
Этап 3.3
Объединим термины.
Этап 3.3.1
Умножим на .
Этап 3.3.2
Умножим на .
Этап 3.3.3
Умножим на .
Этап 3.3.4
Добавим и .
Этап 3.3.5
Умножим на .
Этап 3.3.6
Умножим на .
Этап 3.3.7
Умножим на .
Этап 3.3.8
Добавим и .
Этап 3.3.9
Добавим и .