Математический анализ Примеры

Trovare la Derivata Usando la Regola del Prodotto - d/dt f(t)=(1-t^2)(1-3/(t^2))
Этап 1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Поскольку является константой относительно , производная относительно равна .
Этап 3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Перепишем в виде .
Этап 3.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Чтобы применить цепное правило, зададим как .
Этап 3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.3
Заменим все вхождения на .
Этап 3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.5
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 3.5.1
Применим правило степени и перемножим показатели, .
Этап 3.5.2
Умножим на .
Этап 3.6
Умножим на .
Этап 3.7
Возведем в степень .
Этап 3.8
Применим правило степени для объединения показателей.
Этап 3.9
Вычтем из .
Этап 3.10
Умножим на .
Этап 4
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 4.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Объединим и .
Этап 4.2.2
Добавим и .
Этап 5
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 5.1
По правилу суммы производная по имеет вид .
Этап 5.2
Поскольку является константой относительно , производная относительно равна .
Этап 6
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 6.1
Поскольку является константой относительно , производная по равна .
Этап 6.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 6.3
Умножим на .
Этап 7
Вычтем из .
Этап 8
Упростим.
Нажмите для увеличения количества этапов...
Этап 8.1
Применим свойство дистрибутивности.
Этап 8.2
Применим свойство дистрибутивности.
Этап 8.3
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 8.3.1
Умножим на .
Этап 8.3.2
Объединим и .
Этап 8.3.3
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 8.3.3.1
Вынесем множитель из .
Этап 8.3.3.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 8.3.3.2.1
Вынесем множитель из .
Этап 8.3.3.2.2
Сократим общий множитель.
Этап 8.3.3.2.3
Перепишем это выражение.
Этап 8.3.4
Умножим на .
Этап 8.3.5
Умножим на .
Этап 8.3.6
Объединим и .
Этап 8.3.7
Умножим на .
Этап 8.3.8
Объединим и .
Этап 8.3.9
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 8.3.9.1
Вынесем множитель из .
Этап 8.3.9.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 8.3.9.2.1
Вынесем множитель из .
Этап 8.3.9.2.2
Сократим общий множитель.
Этап 8.3.9.2.3
Перепишем это выражение.
Этап 8.3.10
Добавим и .
Этап 8.3.11
Добавим и .
Этап 8.4
Изменим порядок членов.