Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Перепишем в виде .
Этап 1.2
Развернем , вынося из логарифма.
Этап 2
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.3
Заменим все вхождения на .
Этап 3
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Перенесем влево от .
Этап 4
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 5
Этап 5.1
Чтобы применить цепное правило, зададим как .
Этап 5.2
Производная по равна .
Этап 5.3
Заменим все вхождения на .
Этап 6
Переведем в .
Этап 7
Этап 7.1
Чтобы применить цепное правило, зададим как .
Этап 7.2
Производная по равна .
Этап 7.3
Заменим все вхождения на .
Этап 8
Этап 8.1
Поскольку является константой относительно , производная по равна .
Этап 8.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 8.3
Упростим выражение.
Этап 8.3.1
Умножим на .
Этап 8.3.2
Перенесем влево от .
Этап 8.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 8.5
Умножим на .
Этап 9
Этап 9.1
Применим свойство дистрибутивности.
Этап 9.2
Умножим на .
Этап 9.3
Изменим порядок членов.