Введите задачу...
Математический анализ Примеры
Этап 1
По правилу суммы производная по имеет вид .
Этап 2
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Умножим на .
Этап 3
Этап 3.1
С помощью запишем в виде .
Этап 3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.2.1
Чтобы применить цепное правило, зададим как .
Этап 3.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.3
Заменим все вхождения на .
Этап 3.3
По правилу суммы производная по имеет вид .
Этап 3.4
Поскольку является константой относительно , производная относительно равна .
Этап 3.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.6
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.7
Объединим и .
Этап 3.8
Объединим числители над общим знаменателем.
Этап 3.9
Упростим числитель.
Этап 3.9.1
Умножим на .
Этап 3.9.2
Вычтем из .
Этап 3.10
Вынесем знак минуса перед дробью.
Этап 3.11
Добавим и .
Этап 3.12
Объединим и .
Этап 3.13
Объединим и .
Этап 3.14
Объединим и .
Этап 3.15
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 3.16
Сократим общий множитель.
Этап 3.17
Перепишем это выражение.