Математический анализ Примеры

Найти пересечение с осями X и Y f(x)=4x^3-24x^2+35x-36
Этап 1
Найдем точки пересечения с осью x.
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы найти точки пересечения с осью x, подставим вместо и найдем решение для .
Этап 1.2
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Перепишем уравнение в виде .
Этап 1.2.2
Разложим на множители, используя теорему о рациональных корнях.
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Если у многочленной функции целые коэффициенты, то каждый рациональный ноль будет иметь вид , где  — делитель константы, а  — делитель старшего коэффициента.
Этап 1.2.2.2
Найдем все комбинации . Это ― возможные корни многочлена.
Этап 1.2.2.3
Подставим и упростим выражение. В этом случае выражение равно , поэтому является корнем многочлена.
Нажмите для увеличения количества этапов...
Этап 1.2.2.3.1
Подставим в многочлен.
Этап 1.2.2.3.2
Возведем в степень .
Этап 1.2.2.3.3
Умножим на .
Этап 1.2.2.3.4
Возведем в степень .
Этап 1.2.2.3.5
Умножим на .
Этап 1.2.2.3.6
Вычтем из .
Этап 1.2.2.3.7
Умножим на .
Этап 1.2.2.3.8
Добавим и .
Этап 1.2.2.3.9
Вычтем из .
Этап 1.2.2.4
Поскольку  — известный корень, разделим многочлен на , чтобы найти частное многочленов. Этот многочлен можно будет использовать, чтобы найти оставшиеся корни.
Этап 1.2.2.5
Разделим на .
Нажмите для увеличения количества этапов...
Этап 1.2.2.5.1
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
--+-
Этап 1.2.2.5.2
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
--+-
Этап 1.2.2.5.3
Умножим новое частное на делитель.
--+-
+-
Этап 1.2.2.5.4
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
--+-
-+
Этап 1.2.2.5.5
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
--+-
-+
-
Этап 1.2.2.5.6
Вынесем следующие члены из исходного делимого в текущее делимое.
--+-
-+
-+
Этап 1.2.2.5.7
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
-
--+-
-+
-+
Этап 1.2.2.5.8
Умножим новое частное на делитель.
-
--+-
-+
-+
-+
Этап 1.2.2.5.9
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
-
--+-
-+
-+
+-
Этап 1.2.2.5.10
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
-
--+-
-+
-+
+-
+
Этап 1.2.2.5.11
Вынесем следующие члены из исходного делимого в текущее делимое.
-
--+-
-+
-+
+-
+-
Этап 1.2.2.5.12
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
-+
--+-
-+
-+
+-
+-
Этап 1.2.2.5.13
Умножим новое частное на делитель.
-+
--+-
-+
-+
+-
+-
+-
Этап 1.2.2.5.14
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
-+
--+-
-+
-+
+-
+-
-+
Этап 1.2.2.5.15
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
-+
--+-
-+
-+
+-
+-
-+
Этап 1.2.2.5.16
Поскольку остаток равен , окончательным ответом является частное.
Этап 1.2.2.6
Запишем в виде набора множителей.
Этап 1.2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 1.2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Приравняем к .
Этап 1.2.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.1
Добавим к обеим частям уравнения.
Этап 1.2.4.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.2.1
Разделим каждый член на .
Этап 1.2.4.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.2.2.1.1
Сократим общий множитель.
Этап 1.2.4.2.2.2.1.2
Разделим на .
Этап 1.2.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.5.1
Приравняем к .
Этап 1.2.5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.1
Используем формулу для нахождения корней квадратного уравнения.
Этап 1.2.5.2.2
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 1.2.5.2.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.3.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.3.1.1
Возведем в степень .
Этап 1.2.5.2.3.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.3.1.2.1
Умножим на .
Этап 1.2.5.2.3.1.2.2
Умножим на .
Этап 1.2.5.2.3.1.3
Вычтем из .
Этап 1.2.5.2.3.1.4
Перепишем в виде .
Этап 1.2.5.2.3.1.5
Перепишем в виде .
Этап 1.2.5.2.3.1.6
Перепишем в виде .
Этап 1.2.5.2.3.2
Умножим на .
Этап 1.2.5.2.4
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.4.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.4.1.1
Возведем в степень .
Этап 1.2.5.2.4.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.4.1.2.1
Умножим на .
Этап 1.2.5.2.4.1.2.2
Умножим на .
Этап 1.2.5.2.4.1.3
Вычтем из .
Этап 1.2.5.2.4.1.4
Перепишем в виде .
Этап 1.2.5.2.4.1.5
Перепишем в виде .
Этап 1.2.5.2.4.1.6
Перепишем в виде .
Этап 1.2.5.2.4.2
Умножим на .
Этап 1.2.5.2.4.3
Заменим на .
Этап 1.2.5.2.5
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.5.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.5.1.1
Возведем в степень .
Этап 1.2.5.2.5.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.5.1.2.1
Умножим на .
Этап 1.2.5.2.5.1.2.2
Умножим на .
Этап 1.2.5.2.5.1.3
Вычтем из .
Этап 1.2.5.2.5.1.4
Перепишем в виде .
Этап 1.2.5.2.5.1.5
Перепишем в виде .
Этап 1.2.5.2.5.1.6
Перепишем в виде .
Этап 1.2.5.2.5.2
Умножим на .
Этап 1.2.5.2.5.3
Заменим на .
Этап 1.2.5.2.6
Окончательный ответ является комбинацией обоих решений.
Этап 1.2.6
Окончательным решением являются все значения, при которых верно.
Этап 1.3
Точки пересечения с осью x в форме точки.
точки пересечения с осью x:
точки пересечения с осью x:
Этап 2
Найдем точку пересечения с осью Y.
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы найти точки пересечения с осью y, подставим вместо и найдем решение для .
Этап 2.2
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Избавимся от скобок.
Этап 2.2.2
Избавимся от скобок.
Этап 2.2.3
Избавимся от скобок.
Этап 2.2.4
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.2.4.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.4.1.1
Возведение в любую положительную степень дает .
Этап 2.2.4.1.2
Умножим на .
Этап 2.2.4.1.3
Возведение в любую положительную степень дает .
Этап 2.2.4.1.4
Умножим на .
Этап 2.2.4.1.5
Умножим на .
Этап 2.2.4.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 2.2.4.2.1
Добавим и .
Этап 2.2.4.2.2
Добавим и .
Этап 2.2.4.2.3
Вычтем из .
Этап 2.3
Точки пересечения с осью y в форме точки.
Точки пересечения с осью y:
Точки пересечения с осью y:
Этап 3
Перечислим пересечения.
точки пересечения с осью x:
Точки пересечения с осью y:
Этап 4