Математический анализ Примеры

Этап 1
Продифференцируем обе части уравнения.
Этап 2
Продифференцируем левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.2
Производная по равна .
Этап 2.2.3
Заменим все вхождения на .
Этап 2.3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.3.1
По правилу суммы производная по имеет вид .
Этап 2.3.2
Поскольку является константой относительно , производная по равна .
Этап 2.4
Перепишем в виде .
Этап 2.5
Поскольку является константой относительно , производная по равна .
Этап 2.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.7
Умножим на .
Этап 2.8
Перепишем в виде .
Этап 2.9
Изменим порядок членов.
Этап 3
Продифференцируем правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Чтобы применить цепное правило, зададим как .
Этап 3.2.2
Производная по равна .
Этап 3.2.3
Заменим все вхождения на .
Этап 3.3
Перепишем в виде .
Этап 3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.5
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 3.5.1
Умножим на .
Этап 3.5.2
Изменим порядок членов.
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.1.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.1.1.1.1
Применим свойство дистрибутивности.
Этап 5.1.1.1.2
Перепишем, используя свойство коммутативности умножения.
Этап 5.1.1.1.3
Перенесем влево от .
Этап 5.1.1.1.4
Избавимся от скобок.
Этап 5.1.1.2
Изменим порядок множителей в .
Этап 5.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Изменим порядок множителей в .
Этап 5.3
Добавим к обеим частям уравнения.
Этап 5.4
Вычтем из обеих частей уравнения.
Этап 5.5
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 5.5.1
Вынесем множитель из .
Этап 5.5.2
Вынесем множитель из .
Этап 5.5.3
Вынесем множитель из .
Этап 5.5.4
Вынесем множитель из .
Этап 5.5.5
Вынесем множитель из .
Этап 5.6
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.6.1
Разделим каждый член на .
Этап 5.6.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.6.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.6.2.1.1
Сократим общий множитель.
Этап 5.6.2.1.2
Разделим на .
Этап 5.6.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.6.3.1
Вынесем знак минуса перед дробью.
Этап 5.6.3.2
Объединим числители над общим знаменателем.
Этап 6
Заменим на .