Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Чтобы применить цепное правило, зададим как .
Этап 1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3
Заменим все вхождения на .
Этап 2
По правилу суммы производная по имеет вид .
Этап 3
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Умножим на .
Этап 4
Этап 4.1
Поскольку является константой относительно , производная по равна .
Этап 4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3
Умножим на .
Этап 5
Этап 5.1
Поскольку является константой относительно , производная относительно равна .
Этап 5.2
Добавим и .
Этап 6
Этап 6.1
Объединим термины.
Этап 6.1.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.1.2
Объединим и .
Этап 6.1.3
Объединим числители над общим знаменателем.
Этап 6.1.4
Упростим числитель.
Этап 6.1.4.1
Умножим на .
Этап 6.1.4.2
Вычтем из .
Этап 6.1.5
Объединим и .
Этап 6.2
Изменим порядок множителей в .