Введите задачу...
Математический анализ Примеры
Этап 1
Вынесем из знаменателя, возведя в степень.
Этап 2
Этап 2.1
Применим правило степени и перемножим показатели, .
Этап 2.2
Умножим на .
Этап 3
Этап 3.1
Применим свойство дистрибутивности.
Этап 3.2
Применим свойство дистрибутивности.
Этап 3.3
Применим правило степени для объединения показателей.
Этап 3.4
Вычтем из .
Этап 3.5
Возведем в степень .
Этап 3.6
Применим правило степени для объединения показателей.
Этап 3.7
Вычтем из .
Этап 4
Разделим данный интеграл на несколько интегралов.
Этап 5
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 6
По правилу степени интеграл по имеет вид .
Этап 7
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 8
По правилу степени интеграл по имеет вид .
Этап 9
Этап 9.1
Объединим и .
Этап 9.2
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 10
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 11
По правилу степени интеграл по имеет вид .
Этап 12
Этап 12.1
Упростим.
Этап 12.1.1
Объединим и .
Этап 12.1.2
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 12.2
Упростим.
Этап 12.3
Упростим.
Этап 12.3.1
Умножим на .
Этап 12.3.2
Объединим и .
Этап 12.3.3
Сократим общий множитель и .
Этап 12.3.3.1
Вынесем множитель из .
Этап 12.3.3.2
Сократим общие множители.
Этап 12.3.3.2.1
Вынесем множитель из .
Этап 12.3.3.2.2
Сократим общий множитель.
Этап 12.3.3.2.3
Перепишем это выражение.