Введите задачу...
Математический анализ Примеры
Этап 1
Изменим порядок и .
Этап 2
Изменим порядок и .
Этап 3
Этап 3.1
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
- | + | + |
Этап 3.2
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
- | |||||||
- | + | + |
Этап 3.3
Умножим новое частное на делитель.
- | |||||||
- | + | + | |||||
+ | - |
Этап 3.4
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
- | |||||||
- | + | + | |||||
- | + |
Этап 3.5
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
- | |||||||
- | + | + | |||||
- | + | ||||||
+ |
Этап 3.6
Окончательный ответ: неполное частное плюс остаток, деленный на делитель.
Этап 4
Разделим данный интеграл на несколько интегралов.
Этап 5
Применим правило дифференцирования постоянных функций.
Этап 6
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
Этап 7.1
Пусть . Найдем .
Этап 7.1.1
Перепишем.
Этап 7.1.2
Разделим на .
Этап 7.2
Переформулируем задачу с помощью и .
Этап 8
Вынесем знак минуса перед дробью.
Этап 9
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 10
Умножим на .
Этап 11
Интеграл по имеет вид .
Этап 12
Упростим.
Этап 13
Заменим все вхождения на .