Математический анализ Примеры

Этап 1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Дифференцируем .
Этап 2.1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.1.2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.1.2.3
Заменим все вхождения на .
Этап 2.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.1.4.1
Изменим порядок множителей в .
Этап 2.1.4.2
Изменим порядок множителей в .
Этап 2.2
Переформулируем задачу с помощью и .
Этап 3
Применим правило дифференцирования постоянных функций.
Этап 4
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 4.1
Перепишем в виде .
Этап 4.2
Объединим и .
Этап 4.3
Заменим все вхождения на .