Математический анализ Примеры

Этап 1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Дифференцируем .
Этап 2.1.2
Поскольку является константой относительно , производная по равна .
Этап 2.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.4
Умножим на .
Этап 2.2
Переформулируем задачу с помощью и .
Этап 3
Объединим и .
Этап 4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Объединим и .
Этап 5.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Вынесем множитель из .
Этап 5.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Вынесем множитель из .
Этап 5.2.2.2
Сократим общий множитель.
Этап 5.2.2.3
Перепишем это выражение.
Этап 5.2.2.4
Разделим на .
Этап 6
Интеграл по имеет вид .
Этап 7
Упростим.
Этап 8
Заменим все вхождения на .