Математический анализ Примеры

Trovare la Derivata - d/dy (13y^2)/((7x+13y)^2)
Этап 1
Поскольку является константой относительно , производная по равна .
Этап 2
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 3
Продифференцируем, используя правило степени.
Нажмите для увеличения количества этапов...
Этап 3.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Применим правило степени и перемножим показатели, .
Этап 3.1.2
Умножим на .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Перенесем влево от .
Этап 4
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 4.1
Чтобы применить цепное правило, зададим как .
Этап 4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3
Заменим все вхождения на .
Этап 5
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 5.1
Умножим на .
Этап 5.2
По правилу суммы производная по имеет вид .
Этап 5.3
Поскольку является константой относительно , производная относительно равна .
Этап 5.4
Добавим и .
Этап 5.5
Поскольку является константой относительно , производная по равна .
Этап 5.6
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 5.6.1
Перенесем влево от .
Этап 5.6.2
Умножим на .
Этап 5.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.8
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 5.8.1
Умножим на .
Этап 5.8.2
Объединим и .
Этап 6
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.1
Применим свойство дистрибутивности.
Этап 6.2
Применим свойство дистрибутивности.
Этап 6.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.3.1.1
Перепишем в виде .
Этап 6.3.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 6.3.1.2.1
Применим свойство дистрибутивности.
Этап 6.3.1.2.2
Применим свойство дистрибутивности.
Этап 6.3.1.2.3
Применим свойство дистрибутивности.
Этап 6.3.1.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 6.3.1.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.3.1.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 6.3.1.3.1.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 6.3.1.3.1.2.1
Перенесем .
Этап 6.3.1.3.1.2.2
Умножим на .
Этап 6.3.1.3.1.3
Умножим на .
Этап 6.3.1.3.1.4
Перепишем, используя свойство коммутативности умножения.
Этап 6.3.1.3.1.5
Умножим на .
Этап 6.3.1.3.1.6
Перепишем, используя свойство коммутативности умножения.
Этап 6.3.1.3.1.7
Умножим на .
Этап 6.3.1.3.1.8
Перепишем, используя свойство коммутативности умножения.
Этап 6.3.1.3.1.9
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 6.3.1.3.1.9.1
Перенесем .
Этап 6.3.1.3.1.9.2
Умножим на .
Этап 6.3.1.3.1.10
Умножим на .
Этап 6.3.1.3.2
Добавим и .
Нажмите для увеличения количества этапов...
Этап 6.3.1.3.2.1
Перенесем .
Этап 6.3.1.3.2.2
Добавим и .
Этап 6.3.1.4
Применим свойство дистрибутивности.
Этап 6.3.1.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.3.1.5.1
Умножим на .
Этап 6.3.1.5.2
Умножим на .
Этап 6.3.1.5.3
Умножим на .
Этап 6.3.1.6
Применим свойство дистрибутивности.
Этап 6.3.1.7
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.3.1.7.1
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 6.3.1.7.1.1
Перенесем .
Этап 6.3.1.7.1.2
Умножим на .
Этап 6.3.1.7.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 6.3.1.7.2.1
Перенесем .
Этап 6.3.1.7.2.2
Умножим на .
Нажмите для увеличения количества этапов...
Этап 6.3.1.7.2.2.1
Возведем в степень .
Этап 6.3.1.7.2.2.2
Применим правило степени для объединения показателей.
Этап 6.3.1.7.2.3
Добавим и .
Этап 6.3.1.8
Применим свойство дистрибутивности.
Этап 6.3.1.9
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.3.1.9.1
Умножим на .
Этап 6.3.1.9.2
Умножим на .
Этап 6.3.1.9.3
Умножим на .
Этап 6.3.1.10
Избавимся от скобок.
Этап 6.3.1.11
Перепишем, используя свойство коммутативности умножения.
Этап 6.3.1.12
Умножим на .
Этап 6.3.1.13
Умножим на .
Этап 6.3.1.14
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 6.3.1.14.1
Перенесем .
Этап 6.3.1.14.2
Умножим на .
Нажмите для увеличения количества этапов...
Этап 6.3.1.14.2.1
Возведем в степень .
Этап 6.3.1.14.2.2
Применим правило степени для объединения показателей.
Этап 6.3.1.14.3
Добавим и .
Этап 6.3.1.15
Умножим на .
Этап 6.3.1.16
Умножим на .
Этап 6.3.2
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 6.3.2.1
Вычтем из .
Этап 6.3.2.2
Добавим и .
Этап 6.3.3
Вычтем из .
Нажмите для увеличения количества этапов...
Этап 6.3.3.1
Перенесем .
Этап 6.3.3.2
Вычтем из .
Этап 6.4
Изменим порядок членов.
Этап 6.5
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 6.5.1
Вынесем множитель из .
Этап 6.5.2
Вынесем множитель из .
Этап 6.5.3
Вынесем множитель из .
Этап 6.6
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 6.6.1
Вынесем множитель из .
Этап 6.6.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 6.6.2.1
Вынесем множитель из .
Этап 6.6.2.2
Сократим общий множитель.
Этап 6.6.2.3
Перепишем это выражение.