Математический анализ Примеры

Этап 1
Поскольку является константой относительно , производная по равна .
Этап 2
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2
Умножим на .
Этап 3.3
По правилу суммы производная по имеет вид .
Этап 3.4
Поскольку является константой относительно , производная относительно равна .
Этап 3.5
Добавим и .
Этап 3.6
Поскольку является константой относительно , производная по равна .
Этап 3.7
Умножим на .
Этап 3.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.9
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 3.9.1
Умножим на .
Этап 3.9.2
Вычтем из .
Этап 3.9.3
Добавим и .
Этап 3.9.4
Объединим и .
Этап 4
Возведем в степень .
Этап 5
Возведем в степень .
Этап 6
Применим правило степени для объединения показателей.
Этап 7
Добавим и .