Математический анализ Примеры

Этап 1
Поскольку является константой относительно , производная по равна .
Этап 2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.3
Заменим все вхождения на .
Этап 3
Поскольку является константой относительно , производная по равна .
Этап 4
Возведем в степень .
Этап 5
Возведем в степень .
Этап 6
Применим правило степени для объединения показателей.
Этап 7
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 7.1
Добавим и .
Этап 7.2
Перепишем в виде .
Этап 8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 9
Упростим.
Нажмите для увеличения количества этапов...
Этап 9.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 9.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 9.2.1
Объединим и .
Этап 9.2.2
Объединим и .