Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 1.1.1
Применим свойство дистрибутивности.
Этап 1.1.2
Применим свойство дистрибутивности.
Этап 1.1.3
Применим свойство дистрибутивности.
Этап 1.2
Упростим и объединим подобные члены.
Этап 1.2.1
Упростим каждый член.
Этап 1.2.1.1
Умножим на , сложив экспоненты.
Этап 1.2.1.1.1
Применим правило степени для объединения показателей.
Этап 1.2.1.1.2
Вычтем из .
Этап 1.2.1.2
Упростим .
Этап 1.2.1.3
Умножим на .
Этап 1.2.1.4
Умножим на .
Этап 1.2.1.5
Умножим на .
Этап 1.2.2
Добавим и .
Этап 2
Разделим данный интеграл на несколько интегралов.
Этап 3
Применим правило дифференцирования постоянных функций.
Этап 4
Интеграл по имеет вид .
Этап 5
Этап 5.1
Пусть . Найдем .
Этап 5.1.1
Дифференцируем .
Этап 5.1.2
Поскольку является константой относительно , производная по равна .
Этап 5.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.4
Умножим на .
Этап 5.2
Переформулируем задачу с помощью и .
Этап 6
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
Интеграл по имеет вид .
Этап 8
Упростим.
Этап 9
Заменим все вхождения на .