Математический анализ Примеры

Trovare la Derivata - d/dz z натуральный логарифм от x^2ycos(z)
Этап 1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Производная по равна .
Этап 2.3
Заменим все вхождения на .
Этап 3
Продифференцируем, используя правило умножения на константу.
Нажмите для увеличения количества этапов...
Этап 3.1
Объединим и .
Этап 3.2
Поскольку является константой относительно , производная по равна .
Этап 3.3
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Объединим и .
Этап 3.3.2
Объединим и .
Этап 3.3.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.3.1
Сократим общий множитель.
Этап 3.3.3.2
Перепишем это выражение.
Этап 3.3.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.4.1
Сократим общий множитель.
Этап 3.3.4.2
Перепишем это выражение.
Этап 4
Производная по равна .
Этап 5
Объединим и .
Этап 6
Переведем в .
Этап 7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 8
Умножим на .