Математический анализ Примеры

Trovare la Derivata - d/dx y=(sin(h(2x)))/(cos(h(2x))-5)
Этап 1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Производная по равна .
Этап 2.3
Заменим все вхождения на .
Этап 3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Умножим на .
Этап 3.3.2
Перенесем влево от .
Этап 3.4
По правилу суммы производная по имеет вид .
Этап 4
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 4.1
Чтобы применить цепное правило, зададим как .
Этап 4.2
Производная по равна .
Этап 4.3
Заменим все вхождения на .
Этап 5
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 5.1
Поскольку является константой относительно , производная по равна .
Этап 5.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Умножим на .
Этап 5.3.2
Перенесем влево от .
Этап 5.4
Поскольку является константой относительно , производная относительно равна .
Этап 5.5
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 5.5.1
Добавим и .
Этап 5.5.2
Умножим на .
Этап 6
Возведем в степень .
Этап 7
Возведем в степень .
Этап 8
Применим правило степени для объединения показателей.
Этап 9
Добавим и .
Этап 10
Упростим.
Нажмите для увеличения количества этапов...
Этап 10.1
Применим свойство дистрибутивности.
Этап 10.2
Применим свойство дистрибутивности.
Этап 10.3
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 10.3.1
Умножим .
Нажмите для увеличения количества этапов...
Этап 10.3.1.1
Возведем в степень .
Этап 10.3.1.2
Возведем в степень .
Этап 10.3.1.3
Применим правило степени для объединения показателей.
Этап 10.3.1.4
Добавим и .
Этап 10.3.2
Умножим на .
Этап 10.4
Изменим порядок членов.