Введите задачу...
Математический анализ Примеры
Этап 1
Перепишем в виде .
Этап 2
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Заменим все вхождения на .
Этап 3
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4
Этап 4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 4.2
Изменим порядок множителей в .
Этап 4.3
Применим свойство дистрибутивности.
Этап 4.4
Умножим на .
Этап 4.5
Умножим на .
Этап 4.6
Упростим знаменатель.
Этап 4.6.1
Вынесем множитель из .
Этап 4.6.1.1
Вынесем множитель из .
Этап 4.6.1.2
Возведем в степень .
Этап 4.6.1.3
Вынесем множитель из .
Этап 4.6.1.4
Вынесем множитель из .
Этап 4.6.2
Применим правило умножения к .
Этап 4.7
Умножим на .
Этап 4.8
Вынесем множитель из .
Этап 4.9
Перепишем в виде .
Этап 4.10
Вынесем множитель из .
Этап 4.11
Перепишем в виде .
Этап 4.12
Вынесем знак минуса перед дробью.