Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Поскольку является константой относительно , производная по равна .
Этап 2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4
Умножим на .
Этап 2.5
Поскольку является константой относительно , производная относительно равна .
Этап 2.6
Добавим и .
Этап 3
Производная по равна .
Этап 4
Этап 4.1
Умножим на .
Этап 4.2
Умножим на .
Этап 5
Этап 5.1
Применим свойство дистрибутивности.
Этап 5.2
Упростим числитель.
Этап 5.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 5.2.2
Изменим порядок множителей в .