Математический анализ Примеры

Trovare la Derivata - d/dx y=(x+(x)^(1/2))^(1/2)
Этап 1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы применить цепное правило, зададим как .
Этап 1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3
Объединим и .
Этап 4
Объединим числители над общим знаменателем.
Этап 5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.1
Умножим на .
Этап 5.2
Вычтем из .
Этап 6
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 6.1
Вынесем знак минуса перед дробью.
Этап 6.2
Объединим и .
Этап 6.3
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 7
По правилу суммы производная по имеет вид .
Этап 8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 10
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 11
Объединим и .
Этап 12
Объединим числители над общим знаменателем.
Этап 13
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 13.1
Умножим на .
Этап 13.2
Вычтем из .
Этап 14
Вынесем знак минуса перед дробью.
Этап 15
Объединим и .
Этап 16
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 17
Упростим.
Нажмите для увеличения количества этапов...
Этап 17.1
Изменим порядок множителей в .
Этап 17.2
Умножим на .
Этап 17.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 17.3.1
Запишем в виде дроби с общим знаменателем.
Этап 17.3.2
Объединим числители над общим знаменателем.
Этап 17.4
Умножим числитель на величину, обратную знаменателю.
Этап 17.5
Умножим .
Нажмите для увеличения количества этапов...
Этап 17.5.1
Умножим на .
Этап 17.5.2
Умножим на .