Математический анализ Примеры

Trovare la Derivata - d/dx y=((x-2x^3)(6x-3))^4
Этап 1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы применить цепное правило, зададим как .
Этап 1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3
Заменим все вхождения на .
Этап 2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Поскольку является константой относительно , производная по равна .
Этап 3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4
Умножим на .
Этап 3.5
Поскольку является константой относительно , производная относительно равна .
Этап 3.6
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 3.6.1
Добавим и .
Этап 3.6.2
Перенесем влево от .
Этап 3.7
По правилу суммы производная по имеет вид .
Этап 3.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.9
Поскольку является константой относительно , производная по равна .
Этап 3.10
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.11
Умножим на .
Этап 4
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Применим правило умножения к .
Этап 4.2
Применим свойство дистрибутивности.
Этап 4.3
Умножим на .
Этап 4.4
Изменим порядок множителей в .